•155 South 1452 East Room 380

Salt Lake City, Utah 84112

1-801-585-1233

Acquisition and Analysis of Data in a Pressurized Entrained-Flow Coal Gasifier for the Purposes of Simulation Validation

Kevin J. Whitty

Department of Chemical Engineering Institute for Clean and Secure Energy The University of Utah Salt Lake City, Utah, USA

Outline

- Introduction
- Background coal gasification research
- U. Utah pilot-scale coal gasifier
- Types of data available for validation
- Performance issues
- Uncertainty considerations
- Conclusions

Introduction

- Industrial-scale coal gasifiers are primarily pressurized, O2-blown, entrained-flow variety
- Cost of gasification systems provides strong incentive to optimize using computational simulation
- Access to gasifiers for acquisition of validation data is challenging

Pressurized O₂-Blown Entrained-Flow Gasifiers

Downflow

Upflow

Refractory-Lined

Challenges of Validation Data Acquisition

High temperature

- 1300-1500°C at reactor exit
- In excess of 2000°C within oxy-coal flame

High pressure

- IGCC application typically 25-30 atm (400 psi)
- Chemicals / fuel production 70+ atm (1000+ psi)

Corrosive environment

- Reducing environment
- Gaseous sulfur species (H₂S, COS)
- Molten coal slag

Consequences

- Crossing pressure boundary for gas sampling creates safety concerns
- Thermocouples typically last only a few days

Fundamental Coal Gasification Studies

Experimental Evaluation of Coal Conversion

- Drop tube (entrained-flow) furnaces
 - Pyrolysis yields
 - Char gasification kinetics
 - Physical transformations of coal particles
- Wire mesh heaters
 - Pyrolysis yields
- Thermogravimetric analyzers (TGAs)
 - Heterogeneous char gasification kinetics
- Mini-gasifiers
 - Electrically heated
 - Gases (CO₂, O₂) supplied from laboratory cylinders

"Small" versus "Big"

- Fundamental Studies ("small")
 - Up to perhaps 2 kg/day in entrained-flow reactors
 - Bottled gases
 - Electrically heated
- Commercial-Scale Systems ("big")
 - Hundreds of tons of coal (petcoke) per day
 - Oxygen-blown, with all associated mess
 - Difficult to access
- Need "medium" scale system to bridge this gap of 5 orders of magnitude

Outline

- Introduction
- Background coal gasification research
- U. Utah pilot-scale coal gasifier
- Types of data available for validation
- Performance issues
- Uncertainty considerations
- Conclusions

Bridging the Gap: UofU Gasifier

- Designed to operate like a "large" system
 - No electrical heating
 - Only inputs are oxygen and coal (slurry)
 - Similar in design to a GE gasifier
- Accessible like a "small" system
 - Reactor "stretched out" to decrease diameter and allow sampling at multiple residence times
 - Several (six) sampling ports down length of reactor
 - Six thermocouples for temperature measurement

Gasifier System Schematic

Gasification Research Laboratory

Entrained-Flow Gasifier

Oxygen Supply System

- On-site oxygen tank
 - 6,000 gallons / 20 tons
 - Serves gasification and oxy-fuel systems
- "Trifecta" system to boost pressure
 - 325 psi
 - Limits standard operation pressure to ca. 260 psi
 - Higher pressures require auxiliary high pressure supply
- Flow control system to gasifier
 - Pressure regulator
 - Control valve
 - Coriolis flowmeter

Gasifier Specifications

Parameter	Typical	Max.
Pressure (bar)	18	31
Temperature (°C)	1425	1700
Slurry feed rate (lit/h)	50	150
Coal feed rate (kg/h dry)	30	80
Thermal input (kWth)	220	600
Slurry concentration (wt%)	59	65
Oxygen feed rate (kg/h)	35	150
Syngas production (m ³ /h dry)	50	150

Reactor Details

Reactor dimensions

- 30 inch (0.75 m) pressure vessel
- 8.5 inch (0.22 m) reactor ID
- 60 inch (1.5 m) reactor length
- Designed to identify development of gas and condensed phases as coal undergoes conversion

Sample ports

- Twelve opposing 2 inch (5 cm) ports at six levels for sampling, optical diagnostics
- Two additional 2 inch (5 cm) ports at burner level
- Six 1 inch (2.5 cm) ports for temperature/ pressure measurement

Outline

- Introduction
- Background coal gasification research
- U. Utah pilot-scale coal gasifier
- Types of data available for validation
- Performance issues
- Uncertainty considerations
- Conclusions

The Easy Stuff

Inputs

- Slurry flow rate and concentration
- Coal composition
- Oxygen feed rate
- Purge flow rates

Temperatures

- Five B-type thermocouples along length of reactor
- Additional thermocouples in quench, on shell, etc.

Syngas composition

- Analysis after gas has been quenched, cooled, depressurized
- Solids composition
 - Char caught in filters, slag caught in slag trap
 - Analyzed only after system is depressurized

Extractive Sampling

- Cooled probe for gas sampling within reactor chamber
- Moveable piston will allow quick positioning from wall to centerline of reactor
- Safety systems integrated with gasifier control system
- Can be installed at any of five locations down length of reactor
- Modification of system will allow deposition of condensed-phase material onto probe

Measurement Locations for Stanford TDL Sensor Project

Absorption Fundamentals: Wavelength-Multiplexed Tunable Diode Laser Sensing

- Absorption of laser light by molecular transitions in the combustion gases
 - Beer's law: Transmission = $I/I_o = e^{-kL}$
 - Absorption coefficient k = f(temperature, pressure, gas composition)
- Ratio of absorbance on two molecular transitions yields gas temperature
- Multiplex additional lasers for more combustion species

Absorption Fundamentals: Scanned Direct Absorption and Wavelength Modulation Spectroscopy

- Direct absorption: Simpler, if absorption is strong enough
- WMS: More sensitive especially for small signals (near zero baseline)
 - Ratio of two WMS-2f signals provides T (same as direct absorption)
 - WMS with TDLs has improved noise rejection (especially for non-absorption losses)
 - WMS also produces intensity modulation @1f
 - Since both 2f and 1f signals are proportional to I; 2f/1f independent of optical losses

Absorption Fundamentals: Demonstration that Normalization of WMS Improves Signal-to-Noise Ratio

- Demonstrate normalized WMS-2f/1f
 - No loss of signal when beam attenuated (e.g., scattering losses)
 - No loss of signal when optical alignment is spoiled by vibration
- Normalized WMS-2f/1f signals free from window fouling and particulate loading

TDL Sensor Results at Position 3

Laser Transmission vs. Pressure

0.1 Location 3 Data 40 60 80 100 120 140 160 Pressure [psig]

Measured Temperature at 160 psi

TDL Sensing at Position 2

- High SNR, time-resolved measurements of T
- Normalized WMS accounts for varying transmission
- Measured T at reactor pressures of 90, 120 and 160psig stable
- Measured T at 200 psig identifies potential spray splashback instabilities

TDL-Based Measurements within Reactor "Core" (Position 1)

Validation Data Summary

Conditions

- To 500 kWth
 - -1.5 ton/day coal
- 440 psia (30 atm) pressure
 - Typically operate at psia
- Temp to 3100°F (1700°C)
 - Typically 2400-2600°F
- Various fuels
 - Pittsburgh #8
 - Illinois #6
 - Utah Sufco
 - Texas Lignite
 - Petcoke

Measurements

- Wall temperature
 - -5 positions
- Syngas composition
 - Post-quench
 - Pre-quench
- Reactor temperature
 - Integrated TDL-based
- Internal gas composition
 - Extractive sampling
 - Integrated TDL-based
- Internal condensed-phase
 - Extractive sampling

Outline

- Introduction
- Background coal gasification research
- U. Utah pilot-scale coal gasifier
- Types of data available for validation
- Performance issues
- Uncertainty considerations
- Conclusions

Injector Cold Flow Test System

- Identification of injector performance
 - Uniformity
 - Spray angle
 - Droplet size
- Full scale model
 - Uses same injector as actual reactor
 - Air instead of oxygen
 - Water instead of slurry
- Pressurized system (to 5 bar) under development
- Analytical methods under development

Flow Rate

Flow rates of air and water adjusted simultaneously to maintain air/water ratio

Air pressure drop 2.8 bar

45 degree nozzle

Pressure Drop

Both cases have 30 LPH water feed, 17 Nm³/h air feed 65 degree nozzle

Adjustable Injector Tip

Performance vs. Injector Gap

Temperature Profile

45° nozzle angle (Day 1)

Syngas Composition

45° nozzle angle (Day 1)

45.0% 40.0% 35.0% mol% (dry, normalized nitrogen-free) 30.0% 25.0% 0.8 bar 20.0% 2.1 bar 15.0% 10.0% 5.0% 0.0% H2 co CO2

65° nozzle angle (Day 2)

Outline

- Introduction
- Background coal gasification research
- U. Utah pilot-scale coal gasifier
- Types of data available for validation
- Performance issues
- Uncertainty considerations
- Conclusions

Uncertainty Considerations

- <u>Temperatures:</u> Thermocouple junction located within wall, approx. 0.5 inch from refractory face, to extend thermocouple life
- Gas composition: Cooling within extractive probe may affect gas composition due to:
 - Changes in gas equilibrium composition at lower temperatures
 - Absorption of minor constituents (sulfur compounds, ammonia) by condensed water
 - Condensation of e.g., polyaromatic hydrocarbons as gas is cooled

Uncertainty Considerations (2)

- <u>Condensed-Phase Material</u>: Difficult to obtain instantaneous compositions. Must be aggregate over time.
- All Data: Fluctuations on various time scales need to be quantified
 - 2 seconds
 - 20 minutes
 - Day-to-day

Conclusions

- Acquisition of data within reaction zone of pressurized gasifier very challenging
- Gasifier performance strongly tied to injector design and efficiency of fuel distribution
- Optical techniques offer unique opportunity for real-time non-invasive sampling
- Quantification of data variation and associated uncertainty is important if data is to be used for validation of simulations

Acknowledgements

- U.S. Department of Energy
 - -Award DE-NT0005015
 - -Award DE-FE0001180
- Electric Power Research Institute
- Stanford University
- Eastman Chemical Co.
- Hard working crew of Dave Wagner, David Ray Wagner, Travis Waind, Randy Pummill, Jessica Earl, Mike Burton, Ray King and Eric Berg

